博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
跟我一起hadoop(1)-hadoop2.6安装与使用
阅读量:6223 次
发布时间:2019-06-21

本文共 7237 字,大约阅读时间需要 24 分钟。

伪分布式

hadoop的三种安装方式:

安装之前需要

$ sudo apt-get install ssh

     $ sudo apt-get install rsync

详见:

伪分布式配置

Configuration

修改下边:

etc/hadoop/core-site.xml:

fs.defaultFS
hdfs://localhost:9000

etc/hadoop/hdfs-site.xml:

dfs.replication
1
 
配置ssh
$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa  $ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
 
如果想运行在yarn上
需要执行下边的步骤:
  1. Configure parameters as follows:

    etc/hadoop/mapred-site.xml:

    mapreduce.framework.name
    yarn

    etc/hadoop/yarn-site.xml:

    yarn.nodemanager.aux-services
    mapreduce_shuffle
  2. Start ResourceManager daemon and NodeManager daemon:
    $ sbin/start-yarn.sh
  3. Browse the web interface for the ResourceManager; by default it is available at:
    • ResourceManager - http://localhost:8088/
  4. Run a MapReduce job.
  5. When you're done, stop the daemons with:
    $ sbin/stop-yarn.sh

输入:

可以看到

启动yarn后

  1. Format the filesystem:
    $ bin/hdfs namenode -format
  2. Start NameNode daemon and DataNode daemon:
    $ sbin/start-dfs.sh

    The hadoop daemon log output is written to the $HADOOP_LOG_DIR directory (defaults to $HADOOP_HOME/logs).

  3. Browse the web interface for the NameNode; by default it is available at:
    • NameNode -

输入后得到:

然后执行测试

  1. Make the HDFS directories required to execute MapReduce jobs:
    $ bin/hdfs dfs -mkdir /user  $ bin/hdfs dfs -mkdir /user/
  2. Copy the input files into the distributed filesystem:
    $ bin/hdfs dfs -put etc/hadoop input
  3. Run some of the examples provided:
    $ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar grep input output 'dfs[a-z.]+'
  4. Examine the output files:

    Copy the output files from the distributed filesystem to the local filesystem and examine them:

    $ bin/hdfs dfs -get output output  $ cat output/*

    or

    View the output files on the distributed filesystem:

    $ bin/hdfs dfs -cat output/*

看运行的情况:

查看结果

测试执行成功,可以编写本地代码了。

eclipse hadoop2.6插件使用

下载源码:

git clone
 

下载过程:

编译插件:

cd src/contrib/eclipse-plugin

ant jar -Dversion=2.6.0 -Declipse.home=/usr/local/eclipse -Dhadoop.home=/usr/local/hadoop-2.6.0  //路径根据自己的配置

  • 复制编译好的jar到eclipse插件目录,重启eclipse
  • 配置 hadoop 安装目录

window ->preference -> hadoop Map/Reduce -> Hadoop installation directory

  • 配置Map/Reduce 视图

window ->Open Perspective -> other->Map/Reduce -> 点击“OK”

windows → show view → other->Map/Reduce Locations-> 点击“OK”

  • 控制台会多出一个“Map/Reduce Locations”的Tab页

在“Map/Reduce Locations” Tab页 点击图标<大象+>或者在空白的地方右键,选择“New Hadoop location…”,弹出对话框“New hadoop location…”,配置如下内容:将ha1改为自己的hadoop用户

注意:MR Master和DFS Master配置必须和mapred-site.xml和core-site.xml等配置文件一致。

打开Project Explorer,查看HDFS文件系统。

  • 新建Map/Reduce任务

File->New->project->Map/Reduce Project->Next

编写WordCount类:记得先把服务都起来

/** *  */package com.zongtui;/** * ClassName: WordCount 
* Function: TODO ADD FUNCTION.
* date: Jun 28, 2015 5:34:18 AM
* * @author zhangfeng * @version * @since JDK 1.7 */import java.io.IOException;import java.util.Iterator;import java.util.StringTokenizer;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapred.FileInputFormat;import org.apache.hadoop.mapred.FileOutputFormat;import org.apache.hadoop.mapred.JobClient;import org.apache.hadoop.mapred.JobConf;import org.apache.hadoop.mapred.MapReduceBase;import org.apache.hadoop.mapred.Mapper;import org.apache.hadoop.mapred.OutputCollector;import org.apache.hadoop.mapred.Reducer;import org.apache.hadoop.mapred.Reporter;import org.apache.hadoop.mapred.TextInputFormat;import org.apache.hadoop.mapred.TextOutputFormat;public class WordCount { public static class Map extends MapReduceBase implements Mapper
{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, OutputCollector
output, Reporter reporter) throws IOException { String line = value.toString(); StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); output.collect(word, one); } } } public static class Reduce extends MapReduceBase implements Reducer
{ public void reduce(Text key, Iterator
values, OutputCollector
output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } output.collect(key, new IntWritable(sum)); } } public static void main(String[] args) throws Exception { JobConf conf = new JobConf(WordCount.class); conf.setJobName("wordcount"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(Map.class); conf.setReducerClass(Reduce.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); }}

user/admin123/input/hadoop是你上传在hdfs的文件夹(自己创建),里面放要处理的文件。ouput1放输出结果

将程序放在hadoop集群上运行:右键-->Runas -->Run on Hadoop,最终的输出结果会在HDFS相应的文件夹下显示。至此,ubuntu下hadoop-2.6.0 eclipse插件配置完成。

遇到异常

Exception in thread "main" org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://localhost:9000/output already exists    at org.apache.hadoop.mapred.FileOutputFormat.checkOutputSpecs(FileOutputFormat.java:132)    at org.apache.hadoop.mapreduce.JobSubmitter.checkSpecs(JobSubmitter.java:564)    at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:432)    at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1296)    at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1293)    at java.security.AccessController.doPrivileged(Native Method)    at javax.security.auth.Subject.doAs(Subject.java:415)    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)    at org.apache.hadoop.mapreduce.Job.submit(Job.java:1293)    at org.apache.hadoop.mapred.JobClient$1.run(JobClient.java:562)    at org.apache.hadoop.mapred.JobClient$1.run(JobClient.java:557)    at java.security.AccessController.doPrivileged(Native Method)    at javax.security.auth.Subject.doAs(Subject.java:415)    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)    at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:557)    at org.apache.hadoop.mapred.JobClient.submitJob(JobClient.java:548)    at org.apache.hadoop.mapred.JobClient.runJob(JobClient.java:833)    at com.zongtui.WordCount.main(WordCount.java:83)

1、改变输出路径。

2、删除重新建。

运行完成后看结果:

你可能感兴趣的文章
递 归
查看>>
CSS3实现纸张边角卷起效果
查看>>
Windows平台AnyChat视频显示
查看>>
Altium 拼板方法以及 注意的 地方
查看>>
《推荐系统实践》序言、样章欢迎阅读!
查看>>
Android系统源码学习步骤
查看>>
JavaScript脚本关闭浏览器窗口不出现提示框小技巧
查看>>
浅谈Android View事件分发机制
查看>>
【转】FlashBack总结之闪回查询与闪回表
查看>>
python的多态
查看>>
alpha阶段总结
查看>>
js友好提示是否继续,post提交
查看>>
文本框,下拉框,单选框只读状态属性
查看>>
js 中for循环和indexOf()性能对比
查看>>
【leetcode】934. Shortest Bridge
查看>>
String[]遍历
查看>>
03、书店寻宝(二)
查看>>
个人作业报告
查看>>
团队绩效管理
查看>>
docker - 常用命令
查看>>